best365在线官网登录入口

博士生导师

个人信息
  • 姓名:黄晴
  • 部门:应用数学系
  • 职称:教授
  • 荣誉:博士生导师
  • 电子邮件:hqing@nwu.edu.cn
  • 研究方向:可积系统、数学物理


个人简介



教育背景:

2005.9-2008.6, best365登陆官网, 理论物理, 博士

2001.9-2004.6, best365登陆官网, 计算数学, 硕士

1997.9-2001.6, best365登陆官网, 计算数学, 学士

工作经历:

2016.5至今, best365登陆官网, best365在线官网登录入口, 教授, 博士生导师

2016.2-2017.2, 英国利兹大学, best365在线官网登录入口, 访问学者

2015.4-2015.4,香港城市大学,数学系,访问学者

2015.2-2015.3,香港中文大学,数学科学研究所,访问学者

2004.6-2016.4, best365登陆官网, best365在线官网登录入口, 历任讲师和副教授



项目、成果、论文、奖励


1. 主要科研项目


1. 国家自然科学基金面上项目, 半单Lie代数相关的若干经典和量子可积系统的代数和几何性质(118713962019.1-2022.12.

2. 国家自然科学基金青年项目, 非线性发展方程的切对称和拟局部对称(111013322012.1-2014.12.

3. 国家自然科学基金数学天元青年项目, 非线性偏微分方程的李对称和拟局部对称群分类(109260822010.1-2010.12.

4. 陕西省自然科学基础研究计划, Poisson代数与超可积系统(2018JM10052018.1-2019.12.

5. 陕西省自然科学基础研究计划, 非线性偏微分方程的Virasoro对称代数实现和切对称群分类(2015JM10372015.1-2016.12.

6. 陕西省自然科学基础研究计划, 线性偏微分方程的李对称和拟局部对称群分类(2009JQ10032010.1-2011.12.


2. 主要科研论文


[1] A.P. Fordy and Q. Huang.  Stationary flows revisited. SIGMA Symmetry Integrability Geom. Methods Appl., 2023, 19: 015, 34 pages.

[2] A.P. Fordy and Q. Huang. Integrable and superintegrable extensions of the rational Calogero- Moser model in three dimensions. J. Phys. A: Math. Theor., 2022, 55(2): 225203, 36 pages.

[3] A.P. Fordy and Q. Huang. Adding potentials to superintegrable systems with symmetry. Proc. R. Soc. A, 2021, 477(2248): 20200800, 21 pages.

[4] A.P. Fordy and Q. Huang. Superintegrable systems on 3 dimensional conformally flat spaces. J. Geom. Phys., 2020, 153: 103687, 27 pages.

[5] Q. Huang and R. Zhdanov. Realizations of the Witt and Virasoro algebras and integrable equations. J. Nonlinear Math. Phys., 2020, 27(1): 36-56.

[6] A.P. Fordy and Q. Huang. Generalised Darboux-Koenigs metrics and 3-dimensional superintegrable systems. SIGMA Symmetry Integrability Geom. Methods Appl., 2019, 15: 37, 30 pages.

[7] L. Shang and Q. Huang. On superintegrable systems with a cubic integral of motion. Commun. Theor. Phys., 2018, 69(1): 9-13.

[8] A.P. Fordy and Q. Huang. Poisson algebras and 3D superintegrable Hamiltonian systems. SIGMA Symmetry Integrability Geom. Methods Appl., 2018, 14: 022, 37 pages.

[9] C.E. Ye, Q. Huang, S.F. Shen and Y.Y. Jin. A symmetry classification algorithm of the generalized differential-difference equations. Appl. Math. Lett., 2017, 74: 27-32.

[10] Q. Huang, L.Z. Wang and S.L. Zuo. Consistent Riccati expansion method and its applications to nonlinear fractional partial differential equations. Commun. Theor. Phys., 2014, 65(2): 177-184.

[11] Q. Huang and S.F. Shen. Lie symmetries and group classification of a class of time fractional evolution systems. J. Math. Phys., 2015, 56 (12): 123504, 11 pages.

[12] Q. Huang and R. Zhdanov. Group classification of nonlinear evolution equations: semi- simple groups of contact transformations. Commun. Nonlinear Sci. Numer. Simul., 2015, 26: 184-194.

[13] Q. Huang and R. Zhdanov. Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative. Phys. A, 2014, 409: 110-118.

[14] Q. Huang, L.Z. Wang, S.F. Shen and S.L. Zuo. Galilei symmetries of KdV-type nonlinear evolution equations. Phys. A, 2014, 398: 25-34.

[15] Q. Huang, C.Z. Qu and R. Zhdanov. Group classification of linear fourth-order evolution equations. Rep. Math. Phys., 2012, 70 (3): 331-343.

[16] S.F. Shen, C.Z. Qu, Q. Huang and Y.Y. Jin. Lie group classification of the Nth-order nonlinear evolution equations. Sci. China Math., 2011, 54 (12): 2553-2572.

[17] Q. Huang, C.Z. Qu and R. Zhdanov. Group-theoretical framework for potential symmetries of evolution equations. J. Math. Phys., 2011, 52 (2): 023514, 11 pages.

[18] Q. Huang, C. Z. Qu and R. Zhdanov. Classification of local and nonlocal symmetries of fourth-order nonlinear evolution equations. Rep. Math. Phys., 2010, 65 (3): 337-366.

[19] Q. Huang, V. Lahno, C. Z. Qu and R. Zhdanov. Preliminary group classification of a class of fourth-order evolution equations. J. Math. Phys., 2009, 50 (2): 023503, 23 pages.

[20] C.Z. Qu and Q. Huang. Symmetry reductions and exact solutions of the affine heat equation. J. Math. Anal. Appl., 2008, 346 (2): 521-530.

[21] Q. Huang and C.Z. Qu. Symmetries and invariant solutions for the geometric heat flows. J. Phys. A, 2007, 40 (31): 9343-9360.


  • 3.获奖情况    


1. 非线性偏微分方程的对称、不变量和几何可积性”, 陕西省科学技术奖一等奖, 2010, 第三完成人

2. 非线性偏微分方程的对称、不变量和几何可积性”, 陕西省高等学校科学技术奖一等奖, 2008, 第四完成人